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Abstract 

Choleski's method for solving banded symmetric, positive definite systems is implemented 
on a multiprocessor computer using three FORTRAN based parallel programming languages, 
the Force, PISCES and Concurrent FORTRAN. The capabilities of the languages for expressing 
parallelism and their user friendliness are discussed, including readability of the code, debug- 
ging assistance offered, and expressiveness of the languages. The performance of the different 
implementations is compared. It is argued that PISCES, using the Force for medium-grained 
parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor 
computer, Flex/32. 
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1. Introduction 

Efficient programming of parallel computers to support scientific applications is of increasing im- 
portance. Although many programming environments are available on different machines, there 
have been reIativeIy few comparisons of different programming paradigms on the same machine. 
Several factors that  contribute to the useability of a language have been identified. Using these 
factors this paper explores the strong and weak points of three parallel languages by implementing 
Choleski’s method for solving Ax = b, where A is a banded symmetric positive definite matrix, 
on the Flexible Computer Corporation Flex/32 [Mat84]. The Flex/32 has twenty processors with 
each processor having local memory and access to a shared memory. Appendix 9 illustrates the 
overall architecture of the Flex/32. The architecture and three languages support both shared 
memory and local memory implementations of the algorithm. In addition, one language supports 
message passing. Thus, three programming paradigms can be considered: shared memory, message 
passing, and shared/local which takes advantage of the local memory. These are discussed in the 
next section. The three languages are all derivatives of FORTRAN and are discussed briefly in 
section 3. The Choleski algorithm is given in Section 4 along with a brief discussion of the imple- 
mentation tradeoffs. Section 5 presents observations on the implementation of the algorithm using 
the various paradigms. The observations are based on factors such as expressibilty of functional 
parallelism and data partitioning, support for communication and synchronization, runtime cost, 
ease of program conversion, and user friendliness. The Appendices contain the code representing 
the implementations. 

2. Programming Paradigms 

Three different parallel programming paradigms are considered: shared memory, message passing, 
and share/local (henceforth referred to  as local memory). Parallel architectures can also be placed 
in these three classes. Each paradigm can be implemented on each architecture, but the cost of 
implementing a paradigm on an architecture that doesn’t naturally support that paradigm can be 
substantial. 

For the purposes of this paper, a shared memory architecture is one in which each processor has 
equal access to a shared or common memory (architectures where processors have cache memory 
are placed in this category). In a hybrid architecture, each processor has a local memory and access 
to memory shared by all the processors. Processors in a message passing architecture only have 
access to local memory and must communicate via messages with other processors. 

2.1 Shared Memory 

When using the shared memory paradigm, the programmer can view the computer as a sequen- 
tial computer with several concurrent processes running. Some of the programming issues that 
arise are similar to those arising in concurrent programming on a sequential machine. Since all 
processors are viewed as having equal access to all memory, the location of data is not important. 
However, contention between processors for a particular location in the shared memory or for the 
interconnection network between the processors and memory must be considered. The program- 
mer is primarily concerned with dividing up the work among the processors to allow for maximum 
parallelism while minimizing communication and providing synchronization among the processors. 
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Version A Version B 

sum = sum + 1 
LOCK ( sumlock) 
sum = sum + 1 
UNLOCK( sumlock) 

Figure 1: Shared memory programming bug 

All communication and synchronization between processors takes place via shared memory. 
One of the major burdens that the shared memory paradigm places on the programmer is the 
necessity to synchronize references to objects that  are used by more than one processor. Some 
objects or sections of code require that they be accessed sequentially and the programmer must 
ensure that this is the case while trying to keep all the processors doing useful work. This need for 
synchronization is often the source of “parallel bugs” in shared memory programs (“parallel bugs” 
are bugs that are introduced because the tasks of the program are being run simultaneously, not 
traditional programming bugs). This type of bug also arises when running concurrent processes on 
a sequential computer. Figure 1 shows an example of this type of bug. If several processors are 
simultaneously executing Version A, more than one processor could fetch the same value for sum, 
add one to  it, and replace sum with the same value. In order to get the correct answer, the addition 
to sum must be atomic. In version B, the addition to sum is made atomic by putting an exclusive 
lock around it. This is an example of synchronization which the programmer must provide. 

2.2 Message Passing 

When programming in the message-passing paradigm, one of the programmer’s major concerns is 
the distribution of data. Since one processor cannot access another processor’s memory, perfor- 
mance is improved if the data a processor needs is allocated to its memory. Data exchange and 
communication between processors is achieved via messages sent explicitly from one processor to 
another. Thus the programmer is responsible for movement of data and the division of work among 
processors. The movement of data is achieved by the explicit sending and receiving of messages 
that contain the data to be moved. Synchronization is implicit in the message passing because a 
processor does not send data until the data is ready and a processor does not receive data until it is 
ready to  receive it. Thus, the programmer doesn’t have to be concerned with the synchronization 
problem of the shared memory paradigm, but is faced with the new problem of moving data from 
processor to processor and partitioning this data efficiently across the processors. The programmer 
must really view this paradigm as a group of isolated processes executing simultaneously that can 
communicate only by messages, somewhat akin to the communicating sequential processes model 
of Hoare [Hoa78]. Programs tend to be more difficult to write, but once written, do not have the 
synchronization bugs that occur in shared memory programs. The code in Figure 1 in the message 
passing paradigm might look like the code in Figure 2. In this code, each worktask sends the value 
that is to  be added to sum to sumtask which holds sum and is responsible for updating sum. Thus, 
no explicit synchronization is necessary, just the sending of messages. 
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sumtask worktask 

do 10 i=l ,P send (Val) to sumtask 
receive( Val) 
sum = sum + Val 

10 continue 

Figure 2: Equivalent message passing code for sum problem 

2.3 Shared/Local 

Programming in the local paradigm is very similar to programming in the shared memory paradigm, 
with the exception that in order to obtain peak performance, locality of data must be considered. 
A hybrid architecture can be programmed as a shared memory architecture, but performance may 
not be optimal because the use of local memory may not be optimal (local references are faster than 
shared memory references and there is less possibility of contention). The shared/local paradigm 
lets the programmer make use of this memory hierarchy by allowing the programmer to specify 
where memory is allocated. After the allocation is done, the program looks the same as a shared 
memory program. The programmer may also want to  make local copies of shared data that a 
processor accesses many times in order to make fewer shared memory references. The bugs for the 
shared/local paradigm seem to be the same as for the shared memory paradigm and aside from 
memory allocation, the code tends to look the same. 

3. Languages and Their Use 

Languages compared in this study are restricted to FORTRAN based languages that have been 
implemented on the Flex/32. 

3.1 The Force 

The Force is a parallel language for shared memory multiprocessors [Jor87]. It consists of extensions 
to FORTRAN that include constructs for both medium and coarse grained parallelism. A Force 
is a set of simultaneously initiated processes which run concurrently on different processors. Force 
members communicate through shared variables and synchronize through barriers and critical re- 
gions. Loop iterations are partitioned among Force members by prescheduling or self-scheduling. 
The Force is currently implemented as a preprocessor to the Concurrent FORTRAN preprocessor. 

3.2 Concurrent FORTRAN 

Concurrent FORTRAN [Cor861 is a parallel language for the Flex/32 computer implemented by 
Flexible Computer Corporation. The language assumes a shared memory model of computation 
with some limited message-passing capabilities for synchronization. The user is responsible for 
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explicit process management. Concurrent FORTRAN is implemented as a preprocessor to the 
FORTRAN compiler. 

3.3 PISCES 

PISCES is a parallel language and environment for scientific computation [Pra87]. It can s u p  
port both message-passing based programming and shared memory programming, or a mix of the 
two. For the purposes of this comparison, the two aspects of PISCES are treated as two separate 
languages. PISCES is currently implemented as a preprocessor to the FORTRAN compiler and 
includes a menu-driven environment for configuration of the machine, running the program, and 
obtaining debugging information. The message-passing portion of PISCES provides facilities for 
explicit generation of processes and for process identification. It also provides message sending con- 
structs and “handlers” that accept and process messages. The shared memory portion of PISCES 
is actually the Force language with some minor syntactic differences. All the constructs, including 
shared variables, of the Force can be used within a PISCES process. 

3.4 Using the Languages 

Each processor of the Flex 32 Multiprocessor Computer has its own local memory as well as access 
to a shared memory. This classifies it as a hybrid of distributed and shared memory architectures. 
Given this hybrid nature and implementations of the three languages which support it, algorithms 
can have strictly shared memory implementations or local memory implementations which use 
shared memory for communication amongst processors. In addition, one language, PISCES, s u p  
ports strictly message passing implementations of the algorithms. Therefore, in our study a total of 
seven different implementations of Choleski’s method were possible on the Flex/32. This makes it 
a particularly interesting architecture on which to compare the various paradigms for programming 
parallel computers. In the following sections the terms shared memory, local memory and message 
passing will be used to  distinguish between the different implementations. 

4. Choleski’s Method and its Parallel Implementation 

The solution of 
A x = b  

where A is symmetric positive definite and banded with semi-bandwidth /3 is carried out in three 
phases: 

1) Factor A into LLT, 
2) forward solve Ly = b for y, and 
3) backward solve LTx = y for z. 

There are different ways of organizing each of these phases of computation as described by 
Dongarra, et  al. [DGK84]. For the factorization phase, the “kji” form used by Cleary, et al. 
[CH086] has been chosen, namely: 
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for k = 1 to N 
Ikk=akk 112 

for s = k + 1 to min(k + p, N) 

f o r i =  k + I  t o m i n ( k + p , N )  
Iak=aak/Ikk 

for i = j to min(k + p, N) 
a;j=a;j-l;kljk 

k j i  Choleski Factorization 

This form of Choleski factorization is column oriented, so columns are used to define the granu- 
larity of parallelism. Hence, individual processors are assigned sets of columns which they operate 
upon one at a time. The column wrapped assignment is chosen, which means processor i is assigned 
columns i, i + p, i + 2p,  ..., assuming, of course, there are p processors. In the shared memory 
versions, each processor operates on its columns which are all stored in shared memory, whereas 
in the local memory versions a processor’s columns are copied to  its local memory and operated 
upon there. In the latter case, data shared by all the processors, e.g., a pivot column, are written 
to  shared memory and accessed there. 

For the forward and backward solve phases the inner product ( i j )  algorithm [R088] and the 
column sweep algorithm [GH86] are considered. These are given below. 

for i = 1 to n 
for j = max(i - p, 1) to  i - 1 

y; = bi / lii 

bi = bi - 1;jyj 

The Inner Product ( i j )  Algorithm for Ly = b 

for j = n to 1 
xj  = yj / ljj 
for i = j - 1 to max(j  - p, 1) 

y; = yi - 1;jxj 

Column Sweep (ji) Algorithm for LTx = y 

For the shared memory versions of the forward and backward substitutions, the column sweep 
algorithm is used in both cases. The inner product algorithm could have been equally as effective. 
After the factorization phase in the local versions, the columns of L are stored in the local memories 
in wrapped column form. In this case, the inner product (ij) algorithm for Ly = b and the column 
sweep (ji) algorithm for LTx = y yielded the more efficient implementation. Note that here the 
hybrid nature of the architecture affected the choice of algorithm used. To optimize use of local 
memory, the matrix is stored by columns. To take advantage of this storage, the inner product 
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algorithm followed by the column sweep algorithm must be used, rather than using the column 
sweep algorithm in the both cases as we did for the shared memory version. 

5.  Comparisons 

In the process of carrying out this study several factors contributing to  the useability of a language 
were identified. These include expressibilty of functional parallelism and data partitioning, support 
for communication and synchronization, ease of learning the language, ease of converting existing 
programs, readibilty of the code, debugging and syntax checking, and user friendliness. 

As noted above seven different implementations of Choleski’s method using the three languages 
on the Flex/32 are possible. We examine only six of those implementations in carrying out our 
comparisons below. The six are shared and local memory Force, shared and local memory ConCur- 
rent FORTRAN, strictly message passing PISCES, and PISCES with Force. Programs for each of 
these implementations are included in the appendices. Note that the PISCES with Force program 
is just shared memory Force enclosed in a PISCES task definition statement. 

5.1 

First the expression of functional and data parallelism is examined. In line 1 of the Force program 
in Appendix 1, a Force macro declares the start of a parallel main program, named Choleski, which 
will be executed by N P  processes each of which will be identified by a unique identifier M E .  The 
number of processes executing the program is a parameter specified by the user at runtime. A 
“driver” routine creates these processes, assigns values to N P  and M E  and returns control to the 
user main program. All processes begin executing from this point on, until they are terminated by 
the Join statement in line 141. Segments of program which are to be executed by only one process 
are enclosed in a Barrier - End Barrier pair, e.g., the program segment which puts the pivot column 
into shared memory for everyone to  access (lines 70 - 74). Without barriers each process would 
execute the main program (the function, in this case) in parallel. 

Another example of functional parallelism is illustrated by the parallel Presched DO loop in 
lines 38-40 of the shared memory version of the Force in Appendix 2. Since the statements within 
the loop indexed by S do not depend on each other, they can be executed in parallel for different 
values of S. Pre-scheduling partitions different values of S evenly over processes at compile time. 
The function being executed in parallel is the computation of the pivot column. 

In Concurrent FORTRAN, the Process statement defines a process to  the executing environ- 
ment and if the statement is within a COBEGIN or COBLOCK statement, it  also starts execution 
of the process. For example, in lines 71-75 of Appendix 3, N P  processes are defined where NP 
is the number of processors being used. Since the process statements are in a COBLOCK state- 
ment, each process will begin execution of the Choleski factorization subroutine ELCOL() at the 
end of the COBLOCK statement. Process with tag PID(1) will be executed by processor number 
PROCNUM(1) and will operate upon the set of columns assigned to  it’s local memory by the 
processes executed in the COBLOCK statements 62-66. This set of statements accomplishes the 
data partitioning needed for parallel execution of the Choleski factorization given in lines 152-187 
(the main body of the subroutine ELCOL). 

Every PISCES program is structured as a set of one or more tasks that carry out the compu- 
tational work. The first statement in the PISCES program of Appendix 5 defines the main task, 

Expression of Functional Parallelism and Data Partitioning 
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chol. Within this parent task other tasks are initiated which will work in parallel to carry out the 
Choleski factorization, the forward solve and backward solve. These tasks are initiated in statement 
193 with statements defining the Choleski factorization phase of the tasks given in lines 263-301. 
Sets of data required by the tasks are sent to  them a t  task initiation time much as data is passed 
to  a FORTRAN subroutine when it is called. Subtask initiation and the passing of data to them 
are illustrated in lines 82-92 of Appendix 5. 

The Force constructs provide the user with the ability to  do medium grain, looplevel parallelism 
(using the parallel do loops) as well as coarser grain parallelism by simply calling subroutines 
within the parallel do loops. These levels of parallelism are supported efficiently by starting up 
processes on each processor at the beginning of the program and using constructs like the Barrier 
statement to provide synchronization. With PISCES and Concurrent FORTRAN, the user is 
responsible for starting up the processes and is limited to a coarser grain granularity unless he 
provides the synchronization constructs. The implementation of Choleski factorization required 
looplevel parallelism. This required a high ratio of messages to  computation in the case of PISCES 
and the use of the WHEN and CFlock statements in Concurrent FORTRAN to construct the 
equivalent of a barrier. 

5.2 Communication 

Here language features and constructs which support the communication of intermediate data 
between tasks or processes executing in parallel are compared. 

Within the Force program of Appendix 1 and the Concurrent FORTRAN program of Appendix 
3, communication between processes i s  accomplished by a process assigning the values to be com- 
municated into shared variables in shared memory from which they can be read by other processes 
which need them. This is illustrated, e.g., within the Choleski factorization loop, given by lines 
55-85 in Appendix 1 and lines 152-185 in Appendix 3, where the process owning the current pivot 
column will modify it and then write it from it’s private local memory to a shared variable in shared 
memory. This action is carried out by a simple assignment statement. The Force shared memory 
program required no communication between the tasks. 

In PISCES programs, the communication of intermediate data between executing tasks is more 
explicit. This is accomplished with ”send” statements and “accept” statements which use “han- 
dlers” to accept the data being sent. The use of these constructs is illustrated in the Choleski 
factorization tasks, lines 251-289 of Appendix 5. If a task owns the current pivot column it updates 
it and uses the “to all send” statement to send it to  all other tasks. The send statement also 
specifies the name of a “handler” pivot in this case, which accepts the data. Statements 268-276 
deal with the acceptance of the pivot column while statements 373-385 define the “handler” task. 

The setup time for communication (and programming time) required by PISCES is much larger 
than that  of the local memory versions of Force and Concurrent FORTRAN. In Force and ConCur- 
rent FORTRAN, it is a simple matter of using an assignment statement to assign data to  a variable 
in shared memory and then the other processors can read this data. In PISCES, the programmer 
must use a send statement to send the message to  the tasks that  need the data, and those tasks 
must then execute a “handler” which is in effect a subroutine. 
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5.3 Synchronization 

Next, the constructs available in the different languages for managing synchronization of processes 
and tasks are examined. Two types of synchronization are used within the Force program of 
Appendix 1, the barrier and critical statements. The use of the barrier statement is illustrated 
in the Choleski factorization loop. Statements 70 and 74 are a “Barrier” - “end Barrier” pair. 
This causes all processes to wait before proceeding until the process which computes the current 
pivot column has written it to shared memory. The use of the critical section is illustrated in lines 
100-102 of Appendix 1. 

In the Concurrent FORTRAN program of Appendix 3, the WHEN statement and CFlock 
statements are used to accomplish synchronization. The WHEN statement appears in line 162 and 
prevents the process which owns the current pivot column from updating it and writing it to shared 
memory until all other processes have finished using the old pivot column. The WHEN statement 
in line 170 prevents the processes that need the current pivot column from continuing until it is 
available in shared memory. The CFlock-CFulck statement in lines 182-184 assures that only one 
process a t  a time will update the shared memory variable, NUMDONE. 

In the PISCES program of Appendix 5, “send” and “accept” statements are used to  synchronize 
the execution of tasks. For example, in the Choleski factorization, a task cannot update it’s set of 
columns until it has accepted the pivot column (lines 268-270) from the task which owns, updates 
and sends it (lines 254-260). A check is made by each task to see that the pivots it requires are 
being received in proper order. If not, the task resends them to  itself until they are received in the 
proper order (lines 273-275). 

When using PISCES message passing, synchronization is taken care of by the communication 
of data; the programmer is not responsible for it. However, in the Concurrent FORTRAN and 
Force programs this is one of the programmer’s main responsibilities. The Force synchronization 
constructs are easier to use than those in Concurrent FORTRAN, but they are not as flexible. The 
Barrier statement is very useful, however it requires that all processors reach a Barrier. The pro- 
grammer cannot specify that one task execute some code while the other tasks execute some other 
code that contains a Barrier. When the programmer needs the equivalent of a barrier statement in 
Concurrent FORTRAN he must construct it himself. 

5.4 Runtime Cost 

Comparisons of the runtimes of the various programs were obtained by running the programs on 
several different data sets. Appendix 7 shows the results of this comparison on a data set generated 
from a structural analysis application at NASA Langley Research Center. Negative speedups 
occur in some of the forward and back solve cases due to the large ratio of synchronization to 
computation in these algorithms. From these comparisons, it  is clear that Concurrent FORTRAN 
becomes increasingly costly as more processors are added. The Force versions are faster, with the 
shared and local memory versions being competitive with each other. The difference in execution 
times of the Force programs and strictly message passing PISCES programs is due in part to the 
overhead inherent in message passing and in part to its implementation on an architecture which 
does not support message passing. Runtimes of Force and PISCES with Force programs are nearly 
identical. The high cost of Concurrent FORTRAN is due to the costly implementation of WHEN 
on the Flex/32 compared to  the efficient lock routines used in Force. 
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5.5 Conversion of Existing Programs 

If the parallelism in an existing FORTRAN program exists in DO-loops then it is a fairly sim- 
ple matter to  convert FORTRAN into the Force by using pre-scheduled or self scheduled loops. 
Synchronization is accomplished by barrier statements and critical sections which are easy to use. 
In both PISCES and Concurrent FORTRAN, a conversion of existing programs involves more 
restructuring of the code with PISCES requiring considerably more than Concurrent FORTRAN. 
One measure of coding efficiency is the number of lines of code. By this measure, as seen in A p  
pendix 8, the Force is clearly the language of choice of the three languages examined for conversion 
of existing FORTRAN code. 

5.6 

By design, the Force is like FORTRAN with a small number of constructs added. The use of 
these constructs is reasonably intuitive. Hence, programmers who know FORTRAN can easily 
learn and read the Force. This can be observed by looking at the Force program of Appendix 2. 
Although FORTRAN based, PISCES is harder to  learn. First, the language is based on the idea 
of communicating tasks which is a programming paradigm quite different from that of standard 
languages. Because of this, the new constructs are more complex and hence more difficult to learn. 
They are, however, much more versatile than those in the Force and Concurrent FORTRAN. A 
comparison of the Force program in Appendix 1 with the PISCES program of Appendix 5 clearly 
indicates different complexities of the two languages. The constructs added to FORTRAN to 
produce Concurrent FORTRAN are not much more complex than those those added to the Force. 

The readability of a program written in some language is, of course, related to  the ease with 
which that language can be learned. I t  is not surprising then, given knowledge of FORTRAN, that 
a Force program is relatively easy to read. Force constructs are simple and almost self-explanatory. 
However, the lack of explicit process management can create difficulty in understanding the flow 
of program control in a Force program. For example, in the factorization portion of the Force 
program in Appendix 1 (lines 55-85), every processor is executing the same code and it is difficult 
to  follow the flow of control. 

Once one understands how processes are initiated and the meaning of “when” and “lock/unlock” 
statements, Concurrent FORTRAN is quite readable. As PISCES is more difficult to  learn, 
PISCES programs are more difficult to  read. PISCES parallel constructs are quite complex, e.g., 
the message handlers of PISCES tend to hide some of the work being done in a task. This is illus- 
trated by examining statements 257-259 of the PISCES program of Appendix 5 where the “accept” 
statement names a “handler” incol. One must locate the code for the “handler” incol, lines 370-382, 
which is not very self-explanatory. 

A reasonable measure of difficulty of reading (and time taken to  write) languages is comparing 
the number of lines of code for the same implementation in different languages. This would not 
always be a good measure of readability if we were comparing very different languages such as APL 
and FORTRAN, however, since the languages being discussed are all extensions to  FORTRAN, 
it appears to  be reasonable. Appendix 8 shows the comparison based on the lines of code. It is 
clear the Force is the least verbose of the languages and that local versions take more lines of code 
than shared versions. This is illustrated by comparing the Force local memory and shared memory 
versions of the programs in Appendix 1 and Appendix 2, respectively. First, one observes that the 
number and type of declaration statements increases. In the local memory version, additional lines 

Readability and Learning of the Languages 
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of code (44-53) are needed to distribute data to  the local memories. Also extra code is needed in 
each of the factoring, forward solve and backward solve phases of solution, e.g., in the factoring 
phase of the local memory version a test is made (statement 60) to  see which processor owns the 
pivot column; it then computes it and places it in shared memory. 

5.7 Debugging and Syntax Checking 

All three languages suffer from the problem that they are preprocessors, so the FORTRAN syntax 
errors that are detected by the FORTRAN compiler have line numbers that do not match the 
line numbers of the original source file. The programmer must therefore look at the output of 
the preprocessor t o  find his syntax errors. The Force preprocessor gives no information on syntax 
errors that involve Force constructs, it simply passes them on to  the compiler. It also provides 
no runtime debugging support. PISCES will detect many of the syntax errors involving PISCES 
constructs and give the correct line numbers of the errors in the source file. PISCES also provides 
very good runtime debugging support, with the capability to  trace all messages, process starts, 
etc. Concurrent FORTRAN will detect many syntax errors involving Concurrent constructs and 
will give the correct line numbers of the errors in the source file. However, it provides no runtime 
debugging support. 

5.8 User Friendliness 

To help the user, the Force provides a routine called Forcerun that will allow the user t o  specify 
the name of a program to run and the number of processes to be used in running it. This program 
therefore masks any of the hardware details from the user and is the same for every machine on 
which the Force is implemented. PISCES is more “user friendly”; it allows the user to interactively 
configure the machine, set trace options, and run the program. During the run it interactively 
allows the user t o  examine such things as message queues and memory being used. Concurrent 
FORTRAN, on the other hand has none of the user friendly features of the other two. 

6. Conclusions 

The above discussion focused on comparing the Force, Concurrent FORTRAN and PISCES as 
parallel programming languages. As indicated in the Appendices, the local and shared memory 
versions of the Force programs are very similar; there is a small difference in the performance of the 
two codes due to architectural characteristics of the Flex/32. It should be added that PISCES has 
incorporated all the features of the Force within it’s environment. Hence one is able to  use the best 
features of both PISCES and the Force when writing programs using PISCES. Of course, resulting 
programs can look like nearly pure PISCES programs, nearly pure Force programs or anywhere 
between. The PISCES Force program is nearly the same as the Force program but is enclosed in a 
PISCES task which provides the richness of the PISCES environment for debugging and testing the 
program. Performance results given in Appendix 7 indicate that PISCES Force performs equally 
as well as the Force program. We therefore conclude that the best implementation of Choleski’s 
method on the Flex/32 is one which uses PISCES with Force constructs. 

Clearly much progress in needed in the area of parallel languages for scientific computing. 
One approach is to  construct a FORTRAN-based language that allows the easy expression of 
the parallelism inherent in an algorithm and provides a reasonable amount of portability across 
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architectures. A difficulty in this area is that many of the parallel architectures are very different 
from each other. There is a question of just how much portability can be achieved without an 
unreasonable loss in efficiency. 
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Appendix 1: Force - local memory version 

1 
2 
3 c  
4 
5 
6 
7 
8 C  
9 
10 c 
11 
12 c 
13 
14 c 
15 
16 C 
17 
18 C 
19 
20 c 
21 
22 
23 C 
24 
25 C 
26 
27 C 
28 
29 
30 
31 
32 C 
33 
34 
35 
36 
37 
38 
39 
40 600 
41 525 
42 
43 c 
44 
45 
46 
47 
48 710 
49 
50 
51 700 
52 
53 

Force Choleski of NP ident ME 
Shared INTEGER Beta,BetaP,N 
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size 

Private INTEGER I,J.K,S 
Private INTEGER tempmin 
Private INTEGER tempmax 
Shared REAL TempA(100000) 
TempA is temporary holding for the matrix 

Private REAL A(100000) 
A contains the malrix 

Private INTEGER Assign(2000) 
Assign is the array of column numbers this processor owns 

Private INTEGER NumCols 
NumCols is the number of columns owned 

Shared REAL CurL(2000) 
The current pivot column 

Shared REAL tempCurL(2000) 
The temporary var holding the next pivot column 

Shared REAL RHS(2000) 
RHS is the right-hand side vector 

Private REAL PriSUM 
Shared LOGICAL UPDTRH 
UPDTRH is used for a critical section 

Shared REAL Y(2000) 
The Y vector in the forward solve 

Shared REAL X(2000) 
X is the solution vector 

Private INTEGER LCol, L2Col 
End declarations 

Barrier 
Decide whether to read in or build the matrix 

READ(9,52!5) I 
IF (I.eq.0) THEN 

CALL INITMAT(TempA,RHS,N,Beta,BctaP) 

CALL CRMAT(TempA,RHS,N,Beta,BeW) 
ELSE 

END IF 
WRITE(6,600) N, Beta 
FORMAT(' Order',I4,' matrix with a semi-bandwidth',14,'.') 
FOR MAT( 14) 

End Barricr 
Transfer the matrix from Shared memory to local memory 

LCol = 1 
Preschcd DO 700 I = 1, N 

DO 710 J = 1, BetaP 
A((LCol*BetaP)+J) = TempA((I*BetaP)+J) 

Con tin uc 
Assign(LCo1) = I 
LCol = LCol + 1 

End Preschcd DO 
NumCols = LCol - 1 
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54 C 
55 LCOl = 1 
56 DO100K=l .N 

Start the choleski factorization loop 

57 
58 C 
59 c 
60 

~ 61 
62 
63 
64 
65 C 

67 110 
68 
69 
70 
71 

I 72 
73 115 
74 

76 
77 
78 
79 
80 
81 C 
82 130 
83 
84 120 
85 100 
86 
87 C 
88 
89 
90 
91 
92 C 
93 
94 
95 

I 96 
97 
98 310 
99 c 
100 
101 

I 

~ 7 5 c  

I 102 
I 103 

104 
I 105 

106 
107 
108 

tempmin = min(K+Beta,N) 
if this processor owns the pivot column then compute it and 
place it in shared memory 

IF (Assign(LCol).eq.K) THEN 
A((LCol*BetaP)+l) = sqrt(A((LCol*BetaP)+l)) 
tempCurL(1) = A((LCol*BetaP)+l) 
DO 110 S = K + 1, tempmin 

A((LCol*BetaP)+S-K+1) = A((LCol*BetaP)+S-K+1) / 

tempCurL(S-K+1) = A((LCol*BetaP)+S-K+ 1) 
A((LCol*BetaP)+l) 

Continue 
LCOl = LCOl + 1 

END IF 
Barrier 

DO 115 S = K, tempmin 
CurL(S-K+l) = tempCurL(S-K+1) 

Continue 
End Barrier 
Update the rest of the columns 

DO 120 L2Col= 1, NumCols 
J = Assign(L2Col) 
IF ((J.ge.K+l).and.(J.le.tempmin)) THEN 

Do 130 I = J, tempmin 
A((L2Col*BetaP)+I-J+1) = A((L2Col*BetaP)+I-J+1) 

- CurL(1-K+ l)*CurL(J-K+1) 
CONTINUE 

END IF 

CONTINUE 
CONTINUE 

Forward Solve (using inner product) 
LCOl = 1 
D O 3 0 0 I = l , N  

tempmax = max(1-Beta,l) 
PriSUM = 0 
Compute the amount this processor will subtract from the RHS 

DO 310 L2Col= 1, NumCols 
J = Assign(L2Col) 
IF ((J.ge.tempmax).and.(J.le.I-1)) THEN 

END IF 
PriSUM = F'riSUM + A((BetaP*L2Col)+I-J+ l)*Y(J) 

CONTINUE 
Update the RHS 
Critical UPDTRH 

RHS(1) = RHS(1) - PriSUM 
End Critical 
IF (I.eq.Assign(LCo1)) THEN 

CurDiv = A((BetaP*LCol)+l) 
LCOl = LCOl + 1 

END IF 
Barrier 

Y(1) = RHS(1) / CurDiv 
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109 
110 300 
111 
112 c 
113 
114 
115 C 
116 
117 
118 
119 
120 
121 
122 
123 
124 C 
125 
126 
127 
128 
1 29 
130 410 
131 400 
132 
133 C 
134 
135 
136 
137 500 
138 680 
139 
140 
141 
142 

End Barrier 
CONTINUE 

Backward Solve (using col-sweep) 
LCol = NumCols 
DO 400 J = N, 1, -1 

If we own column J, then compute the new X 
IF (J.eq.Assign(LCo1)) THEN 

X(J) = Y(J) / A((BetaP*LCol)+l) 
LCol = LCol - 1 
IF (LCol.eq.0) LCol = 1 

END IF 
Barrier 
End Barrier 
tempmax = max(J-Beta.1) 
Everyone update Y 

DO 4 10 L2Col = NumCols, 1. - 1 
I = Assign(L2Col) 
IF ((I.1e.J-l).and.(I.ge.tempmax)) THEN 

END IF 

CONTINUE 

Y(I) = Y(1) - A((BetaP*L2Col)+J-I+l)*X(J) 

CONTINUE 

Print the solution vector 
Barrier 
D O 5 0 0 J = l , N  

WRITE(8,680) J, X(J) 
CONTINUE 
FORMAT(’ X(’T14,T) = ’,6E13.6) 

End Barrier 

Join 
END 

Appendix 2: Force - shared memory version 

1 
2 
3 c  
4 
5 
6 
7 
8 C  
9 
10 c 
11 
12 c 
13 
14 C 
15 
16 
17 

Force Choleski of Np ident ME 
Shared INTEGER Beta,BetaP,N 
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size 

Private INTEGER IJ,K,S 
Private INTEGER tempmin 
Private INTEGER tempmax 
Shared REAL A(100000) 
A contains the matrix 

Shared REAL RHS(2000) 
RHS is the right-hand side vector 

Shared REAL Y(2000) 
The Y vector in the forward solve 

Shared REAL X(2000) 
X is the solution vector 

End declarations 

Barrier 



18 C 
19 
20 
21 
22 
23 
24 
25 
26 600 
27 525 
28 
29 
30 C 
31 
32 C 
33 
34 
35 
36 
37 c 
38 
39 
40 110 
41 
42 
43 c 
44 
45 
46 
47 
48 

Decide whether to read in or build the matrix 
READ(9.525) I 
IF (I.e.q.0) THEN 

ELSE 

END IF 
WRITE(6,600) N, Beta 

CALL INITMAT(A,RHS ,N,Beta,BetaP) 

CALL CRMAT(A,RHS,N,Beta,BetaP) 

FORMAT(’ Order’,I4,’ matrix with a semi-bandwidth’,I4,’.’) 
FORMAT(I4) 

End Barrier 

Start the choleski factorization loop 
DO100K=l ,N  

Compute the first element of the pivot column 
Barrier 

End Barrier 
tempmin = min(K+Beta,N) 
Compute the rest of the pivot column 

Presched DO 110 S = K+1, tempmin 

A((K*BetaP)+ 1) = sqrt(A((K*BetaP)+l)) 

A((K*BetaP)+S-K+1) = A((K*BeW)+S-K+1) / A((K*BeW)+l) 
End Presched DO 

Barrier 
End Barrier 
Update the rest of the columns 

Presched DO 120 J = K+1, tempmin 
Do 130 I = J, tempmin 

A((J*BetaP)+I-J+ 1) = A((J*BetaP)+I-J+1) 
C - A((K*BeW)+I-K+l)*A((K*BetaP)+J-K+1) 

130 CONTINUE 
49 120 EndPresched DO 
50 100 CONTINUE 
51 
52 C 
53 D O 3 0 0 J = l , N  
54 Barrier 
55 
56 End Barrier 
57 tempmin = min(J+Beta,N) 
58 
59 
60 310 End Presched DO 
61 300 CONTINUE 
62 
63 
64 C The backward solve (using col-sweep) 

66 Barrier 
67 
68 End Barrier 
69 tempmax = max(J-Beta,l) 
70 
71 
72 410 EndPreschedDO 

The foward solve (using col-sweep) 

Y(J) = RHS(J) / A((BetaP*J)+l) 

Presched DO 310 I = J+1, tempmin 
RHS(1) = RHS(1) - A((BeW*J)+I-J+l)*Y(J) 

65 DO 400 J = N, 1, -1 

X(J) = Y(J) / A((BetaP*J)+l) 

Presched DO 410 I = J-1, tempmax, -1 
Y(I) = Y(1) - A((BetaP*I)+J-I+l)*X(J) 
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I 73 400 
74 
75 c 
76 
77 
78 
79 500 

1 80 680 
81 
82 

1 83 
84 

I 

I 

CONTINUE 

Print out the solution vector 
Barrier 
DO 500 J = 1, N 

WRITE(8,680) J, X(J) 
CONTINUE 
FORMAT(* X(’,14,’) = ’,6E13.6) 

End Barrier 

Join 
END 

Appendix 3: Concurrent FORTRAN - local memory version 

1 
2 
3 c  
4 c  
5 
6 C  
7 
8 
9 c  
10 
11 
12 
13 C 
14 
15 
16 C 
17 
18 
19 c 
20 
21 
22 c 
23 
24 C 
25 
26 C 
27 

29 
30 

I 31 
32 
33 
34 
35 
36 
37 
38 
39 c 

I 28 C 

PROGRAM MAIN 
Shared INTEGER /labell/ PRCNUM(20) 
PRCNUM holds the physical proc number corresponding the 
the logical proc number 

Shared INTEGER /labela NP 
NP is the number of processors 

Shared INTEGER /label3/ NUMDONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Beta is the semi-bandwidth, Be@ is Beta+l, N is the matrix size 
Shared INTEGER /label5/ PIVCOL 
Shared REAL /label6/ TempA(30000) 
REAL A(30000) 
A contains the matrix 

common /pblkl/ A(30000) 
INTEGER ASSIGN(S00) 
Assign contains the list of columns that each processor owns 

common /pblk2/ ASSIGN(500) 
INTEGER NUMCOLS 
numcols is the number of columns that a processor owns 

common /pblk3/ NUMCOLS 
Shared REAL /labelly CurL(2000) 
the current pivot column 

Shared REAL /label7/ RHS(2000) 
RHS is the right-hand side vecto 

Shared REAL /label8/ Y(2000) 
The Y vector in the forward solve 

Shared REAL /label9/ X(2000) 
X is the solution vector 

Shared CHARACTER /labell 1/ NUMLCK 
EXTERNAL LOADC 
EXTERNAL ELCOL 
EXTERNAL FORW 
EXTERNAL BACK 
INTEGER PID(20) 
INTEGER I 
INTEGER ICFret 
INTEGER tempmax, tempmin 

Allocate a lock 
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40 
41 
42 C 
43 
44 
45 
46 
47 15 
48 
49 c 
50 
51 
52 
53 
54 
55 
56 
57 600 
58 525 
59 
6 o c  
61 
62 
63 
64 
65 155 
66 
67 
68 
69 C 
70 
71 
72 
73 
74 150 
75 
76 
77 
78 C 
79 
80 
81 
82 
83 160 
84 
85 
86 
87 C 
88 
89 
90 
91 
92 170 
93 
94 

CALL CFgetl(ICFret,”UMLCK’) 
open(unit=2,cpu= 1 ,file=’/usr/u l/mtj/concur/choleski/param.dat’) 
Read in the number of processors 

READ(2.525) NP 
PRINT *, * Using ’,NP,’ processors’ 
DO 15 I = 1, NP 

PRCNUM(1) = I + 2 
CONTINUE 

Decide whether to read in or build the matrix 
READ(2,525) I 
IF (I.eq.0) THEN 

ELSE 

END IF 
WRITJZ(6,600) N, Beta 

CALL INITMAT(TempA,RHS,N,Beta,BetaP) 

CALL CRMAT(TempA,RHS,N,Beta.BetaP) 

FORMAT(’ Order’,I4,’ matrix with a semi-bandwidth’,I4,’.’) 
FORMAT(I4) 

Load up the private copies of TempA 
PRINT *, ’ Making private copies’ 
COBLOCK 
DO 155 I = 1. NP 

PROCESS (PID(i),LOADC(),PRCNUM(I)) 
CONTINUE 

END COBLOCK 

PIVCOL = 0 
Start the factorization processes on each processor 

NuMDoNE=NP 
COBLOCK 
DO 150 I = 1, NP 

PROCESS (PID(i),ELCOL(),PRCNUM(I)) 
CONTINUE 

END COBLOCK 

PIVCOL = 0 
Start the forward solve processes on each processor 

NuMDoNE=O 
COBLOCK 

DO16oI= l ,NP  
PROCESS (F‘ID(i) FORWO ,PRCNuM(I)) 

CONTINUE 
END COBLOCK 

PIVCOL = N + 1 
Start the back solve processes on each processor 

NuMDoNE=NP 
COBLOCK 

DO 170 I = 1, NP 
PROCESS (PID(i) ,B ACKO ,PRCNUM( I)) 

CONTINUE 
END COBLOCK 
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95 c 
96 
97 
98 500 
99 680 
100 
101 
102 
103 
104 c 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
1 24 
125 
126 20 
127 10 
128 
129 
130 
13 1 
132 C 
133 
134 
135 
136 
137 
138 
139 
140 
14 1 
142 
143 
144 
145 
146 
147 
148 
149 

print the solution vector 
DO 500 J = 1, N 

WRITE(8,680) J, X(J) 
CONTINUE 
FORMAT(' X('J4,') = ',6E13.6) 

CALL CFkill(ICFret.0) 
END 

private copies task 
SUBROUTINE LOADCO 
Shared REAL /label6/ TempA(30000) 
REAL A(30000) 
common /pblkl/ A(30000) 
INTEGER ASSIGN(5OO) 
common /pblk2/ ASSIGN(5OO) 
INTEGER NUMCOLS 
common /pblk3/ NUMCOLS 
INTEGER plself 
INTEGER MYNUM 
INTEGER I, J 
Shared INTEGER /label2/ NP 
Shared INTEGER /label4/ Beta,BeW,N 

MYNUM = pl.df0 
NUMCOLS = 0 
Do 10 I = MYNUM,N, NP 

NUMCOLS = NUMCOLS + 1 
ASSIGN(NUMC0LS) = I 
D o 2 0 J =  1,BetaP 

CONTINUE 
A( (NUMCOLS * BetaP)+J) = Temp A( (I* B etaP)+J) 

CONTINUE 

RETURN 
END 

factorization task 
SUBROUTINE ELCOLO 
INTEGER K,I,J,S 
Shared INTEGER /label21 NP 
Shared INTEGER /label31 NUMDONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Shared INTEGER /label51 PIVCOL 
Shared CHARACTER /labell 1/ NUMLCK 
INTEGER ICFret 
INTEGER MYPIV, MYPIV2 
INTEGER tempmin 
REAL A(30000) 
common /pblkl/ A(30000) 
INTEGER ASSIGN(500) 
common /pblk2/ ASSIGN(5OO) 
INTEGER NUMCOLS 
common /pblk3/ NUMCOLS 
Shared REAL /labell2/ CurL(2000) 
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150 
151 C 
152 MYPIV = 1 
153 D O 1 0 0 K = l , N  

Start the choleski factorization loop 

154 
155 C 
156 
157 
158 
159 
160 & 
161 110 
162 
163 
164 
165 115 
166 
167 
168 
169 
170 
171 
172 C 
173 
174 
175 
176 
177 

tempmin = min(K+Beta,N) 
If I own column K then compute the pivot col 

IF (K.eq.ASSIGN(MYPIV)) THEN 
A((MYPIV*BetaP)+l) = sqrt(A((MYPIV*BetaP)+l)) 
DO 110 S = K+1, tempmin 

A((MYPIV*BeW)+S-K+1) = A((MYPIV*BetaP)+S-K+l) 
/ A((MYPIV*BetaP)+l) 

CONTINUE 
WHEN (NUMDONE.eq.NP) CONTINUE 
DO 115 S = K, tempmin 

CurL(S-K+1) = A((MYPIV*BetaP)+S-K+1) 
CONTINUE 

MYPIV = MYPIV + 1 
NUMDONE=O 
PIVCOL = PIVCOL + 1 

WHEN (PIVC0L.eq.K) CONTINUE 
ELSE 

ENDIF 
Update the rest of the columns 

DO 120 MYPIV2= 1,NUMCOLS 
J = ASSIGN(MYPIV2) 
IF ((J.ge.K+l).and.(J.le.tempmin)) THEN 

Do 130 I = J. temDmin 
A((MYPIV2*B&P)+I-J+1) = A((MYPIV2*BetaP)+I-J+1) 

178 C - CwL(I-K+ l)*CWL(J-K+l) 
179 130 CONTINUE 
180 ENDIF 
181 120 CONTINUE 
182 CALL CFlock(ICFret,l ,"UMLCK') 
183 NuMDONE=NUMDONE+l 
184 CALL CFulck(ICFret.1 ."UMLCK') 
185100 CONTINUE 
186 RETURN 
187 END 
188 
189 C 
190 SUBROUTINE FORWO 
191 INTEGER IJ 
192 REAL A(30000) 
193 common /pblkl/ A(30000) 
194 INTEGER ASSIGN(500) 
195 common /pblk2/ ASSIGN(500) 
196 INTEGER NUMCOLS 
197 common /pblk3/ NUMCOLS 
198 Shared INTEGER /label2/ NP 
199 Shared INTEGER /label3/ NUMDONE 
200 Shared INTEGER /label4/ Beta,BetaP,N 
201 Shared INTEGER /labe15/ PIVCOL 
202 Shared REAL /label7/ RHS(2000) 
203 Shared REAL /label8/ Y(2000) 
204 

the foward solve task using inner-product 

Shared CHARACTER /labell 1/ NUMLCK 
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205 
206 
207 
208 
209 
210 
21 1 
212 c 
213 
214 
215 
216 
217 
218 
219 110 
220 c 
221 
222 
223 
224 
225 C 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 100 
236 
237 
238 
239 C 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 
255 
256 
257 
258 
259 C 

INTEGER ICFret 
INTEGER MYPIV, MYPIV2 
INTEGER tempmax 

MYPIV = 1 
DOlOOI=l ,N  

tempmax = max(1-Beta,l) 
Compute the amount to subtract from the RHS 

PriSUM = 0 
DO 110 MYPIV2 = 1, NUMCOLS 

J = ASSIGN(MYPIV2) 
IF ((J.ge.tempmax).and.(J.lt.I)) THEN 

END IF 
PriSUM = PriSUM + A((BetaP*MYPIV2)+I-J+l)*Y(J) 

CONTINUE 
Update the RHS 

CALL CFlock(ICFret,l ,"UMLCK') 
RHS(1) = RHS(1) - PriSUM 
NUMDONE = NuMDoNE+ 1 
CALL CFulck(ICFIet,l ,"UMLCK') 
If I own column I then compute Y(I) 

IF (I.eq.ASSIGN(MYPIV)) THEN 
WHEN (NUMDONE.eq.NP) CONTINUE 
Y(1) = RHS(1) / A((BetaP*MYPIV)+l) 
MYPIV = MYPIV + 1 
NUMDONE = 0 
PIVCOL = PIVCOL + 1 

WHEN (PIVCOL.eq.1) CONTINUE 
ELSE 

END IF 

RETURN 
END 

CONTLNUE 

the bacward solve task using col-sweep 
SUBROUTINE BACK() 
INTEGER IJ 
REAL A(30000) 
common /pblkl/ A(30000) 
INTEGER ASSIGN(5OO) 
common /pblk2/ ASSIGN(5OO) 
INTEGER NUMCOLS 
common /pblk3/ NUMCOLS 
Shared INTEGER /label2/ NP 
Shared INTEGER /label4/ Beta,BeW,N 
Shared INTEGER /labe15/ PIVCOL 
Shared REAL /label8/ Y(2000) 
Shared REAL /label9/ X(2000) 
Shared CHARACTER /label 11/ NUMLCK 
INTEGER MYPIV, MYPIV2 
INTEGER tempmax 

MYPIV = NUMCOLS 
DO 100 J = N, 1, -1 

If this proc owns column J then compute X(J) 
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260 IF (J.eq.ASSIGN(MYPIV)) THEN 
26 1 
262 
263 
264 
265 END IF 
266 WHEN (PIVC0L.leJ) CONTINUE 
267 tempmax = max(J-Beta,l) 

269 I = ASSIGN(MYPIV2) 
270 IF ((I.leJ-l).and.(I.ge.tempmax)) THEN 
27 1 
272 ENDIF 
273 110 CONTINUE 
274100 CONTINUE 
275 RETURN 
276 END 

X(J) = Y(J) / A((BetaP*MYPIV)+l) 
MYF’IV = MYPIV - 1 
IF (MYPIV.eq.0) MYPIV = 1 
PIVCOL = PIVCOL - 1 

268 DO 110 MYPIV2 = NUMCOLS, 1, -1 

Y o  = Y(1) - A((BetaF‘*MYPIV2)+J-I+1)*X(J) 

Appendix 4: Concurrent FORTRAN - shared memory version 

1 
2 
3 c  
4 c  
5 
6 C  
7 
8 
9 c  
10 
11 
12 c 
13 
14 C 
15 
16 C 
17 
18 C 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 C 
29 
30 
31 C 
32 
33 
34 

PROGRAM MAIN 
Shared INTEGER /label 1/ PRCNUM(20) 
PRCNUM holds the physical proc number corresponding the 
the logical proc number 

Shared INTEGER /labclY NP 
NP is the number of processors 

Shared INTEGER /label3/ NUMDONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Beta is the semi-bandwidth, BetaP is Beta+l, N is the mamx size 
Shared INTEGER /label5/ PIVCOL 
Shared REAL /label6/ A(30000) 
A contains the matrix 

Shared REAL /label7/ RHS(2000) 
RHS is the right-hand side vector 

Shared REAL /label8/ Y(2000) 
The Y vector in the forward solve 

Shared REAL /label9/ X(2OOO) 
X is the solution vector 

Shared CHARACTER /labell 1/ NUMLCK 
EXTERNAL ELCOL 
EXTERNAL FORW 
EXTERNAL BACK 
INTEGER PID(20) 
INTEGER I 
INTEGER ICFret 
INTEGER tempmax, tempmin 

Allocate a lock 
CALL CFgetl(ICFret,”UMLCK’) 
open(unit=2,cpu= 1 ,file=’/usr/u l/mtj/concur/choleski/param.dat’) 
Read in the number of processors 

READ(2,525) NP 
PRINT *, ’ Using ’W,’ processors’ 
DO 15 I = 1, NP 
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35 
36 15 CONTINUE 
37 
38 C 
39 READ(2,525) I 
40 IF (I.eq.0) THEN 
41 CALL INITMAT(A,RI-IS ,N,Beta,BetaP) 
42 ELSE 
43 CALL CRMAT(A,RHS,N.Beta,BetaP) 
44 END IF 
45 WRITE(6,600) N, Beta 
46 600 
47 525 FORMAT(I4) 
48 
49 PIVCOL = 0 
50 C 
51 NUMDONE = NP 
52 COBLOCK 
53 
54 PROCESS (PID(i) BLCOLO ,PRCNUM(I)) 
55 150 CONTINUE 
56 END COBLOCK 
57 
58 
59 PIVCOL = 0 
60 C 
61 NuMDoNE=NP 
62 COBLOCK 
63 DO1601=1,NP 
64 
65 160 CONTINUE 
66 END COBLOCK 
67 
68 
69 
70 C 
71 NuMDoNE=NP 
72 COBLOCK 
73 
74 
75 170 CONTINUE 
76 END COBLOCK 
77 
78 C Print out the solution vector 
79 D O 5 0 0 J = l , N  
80 WRITE(8,680) J, X(J) 
81 500 CONTINUE 
82 680 
83 
84 CALL CFlcill(ICFret,O) 
85 END 
86 
87 C The factorization task 
88 SUBROUTINE ELCOLO 
89 INTEGER MYNUM 

PRCNUM(1) = I + 2 

Decide whether to read in or build the matrix 

FORMAT(’ Order’J4,’ matrix with a semi-bandwidth’.I4,’.’) 

Start the factorization processes on each processor 

DO 150 I = 1, NP 

Start the forward solve processes on each processor 

PROCESS (PID(i) FORW 0 ,PRCNUM(I)) 

PIVCOL = N + 1 
Start the back solve processes on each processor 

DO 170 I = 1. NF’ 
PROCESS (PID(i) ,B ACKQ ,PRCNLM( I)) 

FORMAT(’ X(’J4,’) = ’,6E13.6) 
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90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 c 
103 C 
104 
105 
106 
107 
108 C 
109 
110 
111 
112 
113 
114 110 
115 
116 
117 
118 
119 
120 
121 c 
122 
123 
1 24 
125 C 
126 130 
127 120 
128 
129 
130 
131 100 
132 
133 
134 
135 C 
136 
137 
138 
139 
140 
141 
142 
143 
144 

INTEGER K,IJ 
Shared INTEGER /label2/ NP 
Shared INTEGER /label3/ -ONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Shared INTEGER /label5/ PIVCOL 
Shared REAL /label6/ A(20000) 
Shared CHARACTER /labell 1/ NUMLCK 
INTEGER ICFret 
INTEGER MYF'IV 
INTEGER plself 
INTEGER tempmin 

Start the choleski factorization loop 
Find out what processor I am 

MYNUM = plSelf0 
MYPIV = MYNUM 
DO100K=l .N  

tempmin = min(K+Beta,N) 
If I own the pivot column then compute it 

IF (K.eq.MYFW) THEN 
WHEN (NUMDONE.eq.NP) CONTINUE 
A((K*BetaP)+l) = sqrt(A((K*BetaP)+ 1)) 
DO 110 S = K+1, tempmin 

A((K*BetaP)+S-K+1) = A((K*BetaP)+S-K+1) / A((K*BetaP)+l) 
CONTINUE 

MYPIV = MYPIV + NF' 
" E = O  
PIVCOL = PIVCOL + 1 

WHEN (P1VCOL.eq.K) CONTINUE 
ELSE 

ENDIF 
Update the rest of the columns 

DO 120 J = K+MYNUM, tempmin, NP 
Do 130 I = J, tempmin 

A((J*BetaP)+I-J+1) = A((J*BetaP)+I-J+1) 
- A((K*BetaP)+I-K+l)*A((K*BetaP)+J-K+ 1) 

CONTINUE 
CONTINUE 

CALL CFlock(ICFret,l ,"LJMLCK') 
NuMDoNE=NuMDoNE+ 1 
CALL CFulck(ICFret,l ,"UMLCK') 

CONTINUE 
RETURN 
E N D  

The forward solve task (using col-sweep) 
SUBROUTINE FORWO 
NTEGER MYNUM 
NTEGER IJ 
Shared INTEGER /label2/ NP 
Shared INTEGER /label3/ NUMDONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Shared INTEGER /label5/ PIVCOL 
Shared REAL /label6/ A(20000) 
Shared REAL /label7/ RHS(2OOO) 
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145 
146 
147 
148 
149 
150 
151 

153 
154 
155 
156 
157 C 
158 
159 
160 
161 
162 
163 

I 164 I 165 
I 166 

167 
168 
169 310 
170 
171 
172 
173 100 
174 
175 
176 
177 C 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 C 
195 
196 
197 
198 
199 C 

I 

1 I 152C 

I 

Shared REAL /label8/ Y(2OOO) 
Shared CHARACTER /label 11/ NUMLCK 
INTEGER ICFret 
INTEGER MYPIV 
INTEGER plself 
INTEGER tempmin 

Find out which processor I am 
MYNUM = plselfo 
MYPIV = MYNUM 
DO 100 J = 1, N 

tempmin = min(J+Beta,N) 
If I am responsible for col J then compute Y(J) 

IF (J.eq.MYPIV) THEN 
WHEN (NUMD0NE.eq.NP) CONTINUE 
Y(J) = RHS(J) / A((BetaP*J)+l) 
MYPIV = MYPIV + NP 
NUMDONE=O 
PIVCOL = PIVCOL + 1 

ELSE 
WHEN (PIVC0L.eq.J) CONTINUE 

ENDIF 
DO 310 I = J+MYNUM, tempmin, NP 

RHS(1) = RHS(1) - A((BetaP*J)+I-J+l)*Y(J) 
CONTINUE 

CALL CFlock(ICFret,l ,”UMLCK’) 
NUMDONE = NUMDONE + 1 
CALL CFulck(ICFret,l,’NUMLCK’) 

CONTINUE 
RETURN 
END 

The back solve task using col-sweep 
SUBROUTINE BACK() 
INTEGER MYNUM 
INTEGER IJ 
Shared INTEGER /laben/ NP 
Shared INTEGER /label3/ NUMDONE 
Shared INTEGER /label4/ Beta,BetaP,N 
Shared INTEGER /label5/ PIVCOL 
Shared REAL /label6/ A(20000) 
Shared REAL /label8/ Y(2000) 
Shared REAL /label9/ X(2000) 
Shared CHARACTER /labell I/  NUMLCK 
INTEGER ICFret 
INTEGER MYPIV 
INTEGER plself 
INTEGER tempmax 

find out which processor I am 
MYNUM = plself() 
MYPIV = N + 1 - MYNUM 
DO 100 J = N, 1, -1 

tempmax = max(J-Beta,l) 
If I am responsible for col J then compute X(J) 
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200 IF (J.eq.MYPIV) THEN 
20 1 WHEN ( " E . e q . N P )  CONTINUE 
202 
203 
204 " E = O  
205 
206 ELSE 
207 WHEN (PIVC0L.eq.J) CONTINUE 
208 ENDIF 
209 
210 
211 410 CONTINUE 
212 CALL CFlock(ICFret.1 ,'NUMLCK') 
213 NuMDoNE="E+ 1 
214 CALL CFulck(ICFret,l ,"UMLCK') 
215100 CONTINUE 
216 R E m  
217 END 

X(J) = Y(J) / A((BetaP*J)+l) 
MYPIV = MYPIV - NP 

PIVCOL = PIVCOL - 1 

DO 410 I = J-MYNUM, tempmax, -NP 
Y(I) = Y(1) - A((BetaP*I)+J-I+l)*X(J) 

Appendix 5: PISCES message passing version 

1 tasktype chol 
2 
3 C 
4 C 
5 C BetaPisBeta+ 1 
6 integer MaxN, MaxBetaP 
7 C 
8 parameter (MaxN=305) 
9 parameter (MaxBetaP=80) 
10 parameter (P=25) 
11 * M should be at least as great as N/P 

integer N, M, P, Beta, BetaP 
N is the matrix size, M is the rnax number of columns per proc 
P is the max number or processors, Beta is the semi-bandwidth, 

MaxN is the max matrix size, MaxBetaP is the max semi-bandwidth 

12 
13 
14 C 
15 
16 C 
17 
18 c 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 C 
29 
30 
31 C 
32 
33 

parameter (M=305)- 
integer colasgn(P,M) 
colasgn is the array of which columns a processor owns 

integer numcols(P) 
numcols is the number of columns owned by each processor 

taskid tasknum(P) 
the array of task id's 

common /tblk/tasknum(P) 
handler getid 
real WMaXN) 
handler mnewx 
integer xok 
common /bblkl/xok 
real Curx 
common /bbWCurx 
real A(MaxN,MaxBetaP) 
A is the matrix 

common /result/A(MaxN,MaxBetaP) 
real B(MaxN) 
B is the right hand side 

common /rhs/B(MaxN) 
integer owner(MaxN) 
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34 C 
35 signal fordon 
36 integer numclust 
37 integer clust 
38 handler newcol 
39 enddeclarations 
40 * 
41 * Generate test matrices 
42 * 
43 CALL SETCPU(1) 
44 open(unit=2,file='/usr/ul/mtj/pisces/mchol3/param.dat') 
45 READ(2,500) N 
46 
47 READ(2,500) Beta 
48 
49 500 FORMAT(I4) 
50 
51 
52 A(i,l) = Beta * 4.0 
53 do 20j = 2,Beta+l 
54 A(ij) = -1.0 
55 20 continue 
56 10 continue 
57 * 
58 * Make the assignment of columns to tasks 
59 * 
60 clust=pppcminO 
61 numclust = 0 
62 
63 numcols(c1ust) = 0 
64 clust = pppcnxt(c1ust) 
65 
66 if (clust.eq.pppcmin()) goto 55 
67 50 continue 
68 55 continue 
69 myclust = pppgclu (pppself) 
70 clust = pppcmino 
71 do6Oi=l ,N 
72 * 
73 
74 
75 colasgn(clust,numcols(clust)) = i 
76 owner(i) = clust 
77 clust = pppcnxt(c1ust) 
78 60 continue 
79 * 
80 * Make the assignment of tasks to clusters 
81 * 
82 clust=pppcminO 
83 
84 
85 
86 & 
87 & 
88 & 

the array of who owns each column 

print *, ' N = ',N 

print *, ' Beta = ',Beta 

BetaP = Beta + 1 
do 10 i = 1,N 

do 50 i = 1, 1OOOOO 

numclust = numclust + 1 

Skip the cluster on which this task is running 
if (myclust .q. clust) clust = pppcnxt (clust) 
numcols(c1ust) = numcols(c1ust) + 1 

do 70 i = 1, 1OOOOO 
if (myclust .eq. dust) clust = pppcnxt (clust) 
on cluster(c1ust) initiate colsrv (N,Beta,numclust, 

pppvl (numcols, clust, clust), 
pppml (colasgn, P, M, clust, clust, 1, M), 
pppvl (owner, 1 N) 
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89 clust = pppcnxt(c1ust) 
90 if (clustq.pppcmin0) goto 75 
91 70 continue 
92 75 continue 
93 * 
94 * Get the taskid of every task 
95 * 
96 accept numclust-1 of 
97 getid 
98 endaccept 
99 * 
100 to all send allids(pppvl(tasknum,l,P)) 
101 * 
102 * Send the columns that are assigned to each processor to that processor 
103 * 
104 clust=pppcminO 
105 
106 
107 
108 to tasknum(c1ust) send incol 
109 & (i,BetaP,pppm l(A,MaxN,MaxBetaP,colasgn(clustj), 
110 & colasgn(clustj),l ,BetaP)) 
111 90 continue 
112 clust = pppcnxt(c1ust) 
113 if (clust.eq.pppcmin0) goto 85 
114 80 continue 
115 85 continue 
116 * 
117 * Wait for results to come back 
118 * 
119 accept N of 
120 newcol 
121 endaccept 
122 * 
123 * Initialize the RHS to all 1’s 
124 * 
125 do 120 i=l,N 
126 B(i) = 1.0 
127 120 continue 
128 * 
129 * Start the forward solve 
130 * 
131 do 130 i=l,N 
132 to tasknum(owner(i)) send bval(B(i)) 
133 130 continue 
134 accept numclust-1 of 
135 fordon 
136 endaccept 
137 * 
138 * Start back solve 
139 * 
140 accept n of 
141 mnewx 
142 endaccept 
143 * 

Send the collection of taskid’s to every task 

do 80 i = 1, 1OOOOO 
if (myclust .eq. clust) clust = pppcnxt (clust) 
do 90 j = 1, numcols(c1ust) 
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144 * print the solution vector 
145 * 
146 do 450 i=l,N 
147 WRITE (8,650) i,X(i) 
148 450 continue 
149 650 
150 terminate 
151 end 
152 * 
153 * HANDLER: Store the taskid in the array 
154 * 
155 handler getid (index, tasknum(index)) 
156 integer index 
157 integer P 
158 parameter (P=25) 
159 taskid tasknum(P) 
160 common /tblk/tasknum(P) 
161 enddeclarations 
162 return 
163 end 
164 * 
165 * HANDLER: Store the incoming column in the array 
166 * 
167 handler newcol (col, BetaP, 
168 & 
169 integer MaxN, MaxBetaP, BetaP 
170 parameter (MaxN=305) 
171 parameter (MaxBetaP=80) 
172 real A(MaxN,MaxBetaF') 
173 common /result/A(MaxN,MaxBetaF') 
174 integer col 
175 enddeclarations 
176 return 
177 end 
178 * 
179 * factorization, back solve and forward solve task 
180 * 
181 
182 & 
183 * 
184 integer M, BetaP 
185 integer MaxBeraF' 
186 parameter (M=305) 
187 parameter (MaxBetaP=80) 
188 integer P 
189 parameter (P=25) 
190 integer MaxN 
191 parameter (MaxN=305) 
192 integer owner(MaxN) 
193 integer numclust 
194 integer N, Beta, numcols 
195 common /mblkl/ numcols 
196 integer mycols(M) 
197 common /mblk2/ mycols(M) 
198 handler incol 

FORMAT(' X(',14,') = ',E13.6) 

pppm 1 (A,MaxN,MaxBetaF',col,col,l ,Bern)) 

tasktype colsrv (N, Beta, numclust, numcols, 

These parameter must match that in the chol tasktype definition 
pppvl (mycols, 1, M), pppvI(owner, 1. N) 
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199 
200 
201 c 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 c 
212 
213 
214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 C 
225 
226 
221 c 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 * 
237 * 
238 * 
239 
240 * 
24 1 
242 
243 
244 * 
245 
246 
247 
248 * 
249 * 
250 * 
25 1 
252 
253 * 

handler pivot 
real Amine(M,MaxBetaF') 
Amine contains the columns that this processor owns 

common /blk l/Amine(M,MaxBetaP) 
real piv(h4axBetaP) 
common /blk2/piv(MaxBetaP) 
integer pivnum 
common /blk3/pivnum 
integer curk 
integer curin 
common /blk5/curin 
real Yminc(M) 
Ymine contains the Y values that this processor owns 

common /blk4/Ymine(M) 
real sum 
integer sent 
integer k,s,i 
handler bval 
handler bup 
handler newx 
integer xok 
common /bblkl/xok 
real Curx 
common /bblkWCurx 
real B(M) 
B contains the right hand side values this processor owns 

common /fblkl/ B(M) 
integer bcount(M) 
bcount contains the number of updates to B(i) received 

common /fblkW bcount(M) 
taskid tasknum(P) 
common /tblk/tasknum(P) 
handler allids 
enddeclarations 

BetaP = Beta + 1 
myclust = pppgclu (pppself) 

Send my taskid to the parent 

to parent send getid(myclust,pppself) 
Accept the vector of taskids 
accept 1 of 

allids 
endaccept 
receive the columns that we are assigned 
accept numcols of 

incol 
endaccept 

Begin the factorization 

myk=l 
do 10 k=l,N 

if I own column k then compute and broadcast the pivot 
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254 
255 
256 
257 
258 20 
259 
260 & 
26 1 
262 & 
263 
264 
265 30 
266 
267 
268 40 
269 
270 
271 * 
272 * 
273 
274 
275 & 
276 
277 
278 
279 * 
280 
28 1 
282 & 
283 
284 
285 & 
286 60 
287 
288 50 
289 10 
290 * 

if (mycols(myk).eq.k) THEN 
Amine(m yk, l)=sqrt(Amine(m yk,l)) 
do 20 s=2,(min(k+Beta,N)-k+l) 

continue 
to all send pivot(mycols(myk), BetaP, 

to parent send newcol(mycols(myk), BetaP, 

do 30 s=l,BetaP 

continue 
myk = myk + 1 

accept 1 of 
pivot 

endaccept 
if a pivot column is received out of order then 
send it back to myself and get another 
if @ivnum.ne.k) THEN 

to self send pivot(pivnum, BetaP, 

goto 40 

Amine(myk,s)=Amine(myk,s)/Amine(m yk, 1) 

pppm 1 (Amine,M,MaxBetaP,myk,m yk, 1 ,BetaF')) 

pppm l(Amine,M,MaxBetaP,myk,m yk, 1 ,BetaF')) 
' 

piv(s)=Amine(m yk,s) 

ELSE 

pppvI@iv,l,Be@)) 

ENDIF 
ENDIF 
update the rest of the columns that I own 
do 50 s = myk,numcols 

if ((mycols(s).gt.k).and.(mycols(s).le.min(k+Beta,N))) 
THEN 
do 60 i=l ,min(Beta+k,N)-mycols(s)+l 

Amine(s,i)=Amine(s,i)-piv(i+m ycols(s)-k)* 
piv(mycols(s)-k+ 1) 

continue 
ENDIF 

continue 
continue 

291 * start forward solve (using inner product) 
292 * 
293 
294 * 
295 
296 
297 
298 
299 
300 90 
301 
302 
303 
304 
305 
306 
307 & 
308 

cUrin=l 
receive the right hand side 'values that I own 
accept numcols of 

bval 
endaccept 
do 90 i = 1, numcols 

continue 
curin=l 
do 1OOi= l,N 

bcount(i) = 0 

sum = 0 
sent = 0 
do 110 s = 1, numcols 

if ((mycols(s).ge.max( 1,i-Beta)).and.(mycols(s).lt.i)) 

sum = sum + Amine(s,i-mycols(s)+l) * Ymine(s) 
THEN 
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309 
310 * 
311 * 
3 12 
313 
314 150 
315 
3 16 
317 
318 
319 160 
320 
32 1 
322 
323 110 
324 
325 
326 
327 100 
328 
329 * 

ELSE if (mycols(s).eq.i) THEN 
if I own this column then wait for everyone 
to send me the updates and then compute Y(1) 
b(s) = b(s) - sum 
sent = 1 

accept all of 

endaccept 
goto 150 
continue 

Ymine(curin) = B(curin) / Amine(curin,l) 
curin = curin + 1 

if (bcount(s).eq.numclust-2) goto 160 

bUP 

ENDIF 
continue 

if (sent.eq.0) then 

endif 
continue 

to tasknum(owner(i)) send bup(i,sum) 

to parent send fordon 

330 * start backsolve (using col-sweep) 
331 * 
332 
333 
334 
335 
336 
337 
338 
339 
340 
34 1 
342 210 
343 
344 
345 
346 
34 7 
348 
349 & 
350 
35 1 
352 220 
353 200 
354 300 
355 
356 
357 * 
358 * 
359 * 
360 
361 & 
362 

curk=numcols 
do 200 j=N,l,-1 

if (curk.eq.0) goto 300 
if (mycols(curk).eq.j) THEN 

Curx=Ymine(curk)/Amine(curk, 1) 
to all send newx(j,Curx) 
to parent send mnewx(j,Curx) 
CWk = Curk - 1 

ELSE 
xok = j 

newx 
endaccept 
if (xok.ne.0) goto 210 

accept 1 of 

ENDIF 
do 220 s = cuk, 1, -1 

if ((mycols(s).lt.j).and.(mycols(s).ge.max(lj-Beta))) 
THEN 

Ymine(s) = Ymine(s) - Amine(sj-mycols(s)+l)*Curx 
ENDIF 

continue 
continue 
continue 

terminate 
end 

HANDLER receive a column and place it in Amine 

handler incol(co1, BetaP, 

integer M, BetaP 
mameter (M=305) 

pppm 1 (Amine,M,MaxBetaP,col,col, 1 ,Betap)) 

363 
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~~ 

364 
365 
366 
367 
368 
369 
370 
37 1 
372 * 
373 * 
374 * 
375 
376 
377 
378 
379 
380 
38 1 
382 
383 
384 
385 
386 * 

integer MaxBetaP 
parameter (MaxBetaP=80) 
mal Amine(M.MaxBetaP) 
common /blkl/Amine(M,MaxBetaP) 
integer col 
enddeclarations 
return 
end 

HANDLER receive a pivot column and place it in piv 

handler pivot(pivnum. BetaP, pppvl(piv,l ,Be@)) 
integer BetaP 
integer MaxBetaP 
parameter (MaxBetaP=80) 
real piv(MaxBetaP) 
common /blk2/piv(MaxBetaF') 
integer pivnum 
common /blk3/pivnum 
enddeclarations 
return 
end 

387 * HANDLER take in the updated bval 
388 * 
389 handler bval (B(curin)) 
390 integer M 
39 1 parameter (M=305) 
392 real B(M) 
393 common /fblkl/ B(M) 
394 integer curin 
395 common /blk5/curin 
396 enddeclarations 
397 
398 return 
399 end 
400 * 
401 * HANDLER: take in the new x and place in x(r0w) for main task 
402 * 
403 handler mnewx (row,X(row)) 
404 integer row 
405 parameter (MaxN460) 
406 real X(MaxN) 
407 common /xblk/X(MaxN) 
408 enddeclarations 
409 return 
4 10 end 
411 * 
412 * HANDLER: take in the new x 
413 * 
4 14 handler newx (row,Curx) 
415 integer row 
416 integer xok 
417 common /bblkl/xok 
418 real Curx 

curin = curin + 1 
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419 common /bbWCurx 
420 enddeclarations 
421 
422 if (row.eq.xok) THEN 
423 xok = 0 
424 ELSE 
425 to self send newx(row,Curx) 
426 ENDIF 
427 return 
428 end 
429 * 
430 * HANDLER: Update the rhs 
431 * 
432 
433 
434 
435 
436 
437 
438 
439 
440 
44 1 
442 
443 
444 
445 
446 
447 
448 
449 
450 10 
451 15 
452 
453 
454 
455 
456 * 

handler bup (row, bval) 
integer MaxN,M 
parameter (M=305) 
parameter (MaxN=305) 
integer row 
real bval 
real B(M) 
common /fblkl/ B O  
integer bcoun t0  
common /fbW bcount(M) 
integer numcols 
common /mblkl/ numcols 
integer mycols(M) 
common /mblk2/ mycols(M) 
enddeclarations 

do 10 i= 1, numcols 

continue 
continue 

B(i) = B(i) - bval 
bcount(i) = bcount(i) + 1 
return 
end 

if (row.eq.mycols(i)) got0 15 

457 * HANDLER: accepts vector of taskids 
458 * 
459 handler allids (pppvl(tasknum.1 ,P)) 
460 integer P 
461 parameter (P=25) 
462 taskid tasknum(P) 
463 common /tblk/tasknum(P) 
464 enddeclarations 
465 return 
466 end 

Appendix 6: PISCES FORCE version 

1 tasktype chol 
2 INTEGER IJ,K,S 
3 INTEGER tempmin 
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4 
5 
6 
7 c  
8 
9 c  
10 
11 c 
12 
13 C 
14 
15 C 
16 
17 
18 
19 
20 
21 
22 
23 
24 C 
25 
26 
27 
28 
29 
30 
31 
32 
33 

INTEGER tempmax 
shared 

INTEGER Beta,BetaP,N 
Beta is the semi-bandwidth, BetaP is Beta+l, N is the matrix size 

REAL A(20000) 
A contains the matrix 
REAL RHS(1000) 
RHS is the right-hand side vector 

The Y vector in the forward solve 

X is the solution vector 
INTEGER STARTTIME,ENDTIME 
common /blk l/Beta ,BetaP,N,A 
common /bLk2/RHS ,Y ,X,STARlTIME,ENDTIME 

REAL Y(1Ooo) 

REAL X(l000) 

end shared 
end declarations 

forcesplit 
banier 

Decide whether to read in or build the matrix 
CALL SETCPU( 1) 
open(unit=9,file=’/usr/u I/mtj/pisces/fchol/param.dat’) 
READ(9,525) I 
IF (I.eq.0) THEN 

ELSE 

END IF 
WRITE(6,600) N, Beta 

CALL INITMAT(A,RHS,N,Beta,BetaP) 

CALL CRMAT(A,RHS,N,Beta,BetaP) 

34 600 
35 525 FORMAT(I4) 
36 end barrier 
37 
38 C 
39 DO 100 K =  l , N  

FORMAT(’ Order’J4,’ matrix with a semi-bandwidth’,I4,’.’) 

Start the choleski factorization loop 

40 C 
41 
42 
43 
44 
45 c 
46 
47 
48 110 
49 
50 
51 C 
52 
53 
54 
55 c 
56 130 
57 120 
58 100 

Compute the first element of the pivot column 
barrier 

end barrier 
tempmin = min(K+Beta,N) 
Compute the rest of the pivot column 

presched do 110 S = K+ 1, tempmin 

A((K*BeW)+ 1) = sqrt(A((K*BetaP)+ 1)) 

A((K*BetaP)+S-K+1) = A((K*BetaP)+S-K+1) / A((K*BetaP)+ 1) 
CONTINUE 

banier 
end barrier 
Update the rest of the columns 

presched do 120 J = K+ 1, tempmin 
Do 130 I = J, tempmin 

A((J*BetaP)+I-J+ 1) = A((J*BetaP)+I-J+1) 
- A((K*BetaP)+I-K+l)*A((K*Betal?)+J-K+1) 

CONTINUE 
CONTINUE 

CONTINUE 
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59 

61 
~ 60 C The foward solve (using col-sweep) 

DO 300 J = 1, N 
62 barrier 
63 
64 end barrier 
65 tempmin = min(J+Beta,N) 
66 
67 
68 310 CONTINUE 
69 300 CONTINUE 
70 
71 C The backward solve (using col-sweep) 

73 barrier 
74 
75 end barrier 
76 tempmax = max(J-Beta,l) 
77 
78 
79 410 CONTINUE 
80 400 CONTINUE 
81 
82 C Print out the solution vector 
83 barrier 
84 D O 5 0 0 J = I , N  
85 WRITE(8,680) J, X(J) 
86 500 CONTINUE 
87 680 
88 end barrier 
89 
90 terminate 
91 end 

Y(J) = RHS(J) / A((BetaP*J)+l) 

presched do 310 I = J+1, tempmin 
RHS(1) = RHS(1) - A((BeW*J)+I-J+l)*Y(J) 

72 DO 400 J = N, 1, -1 

X(J) = Y(J) / A((BetaP*J)+l) 

presched do 410 I = J-1, tempmax, -1 
Y(1) = Y(1) - A((BetaP*I)+J-I+l)*X(J) 

FORMAT(’ X(’J4,’) = ’,6E13.6) 

, 
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Appendix 7 

Language PE's Fact Forw Back 

37 

201.80 6.00 
105.00 
56.62 1.66 
33.38 1.06 

16 21.04 0.94 

7.38 
3.76 
2.00 
1.22 
1.04 

239.94 3.04 
121.82 1.62 
62.22 0.94 
32.56 0.68 

16 18.46 0.92 

3.14 
1.68 
0.98 
0.72 
0.94 I. 

180.52 8.46 
96.22 

10.36 
17.62 41.44 

16 44.28 30.88 

I 

1 

7.28 
5.86 
7.56 
14.14 
28.08 

217.70 5.76 
116.76 

49.26 17.48 
1 68.04 ?: 

16 5 1.20 30.96 I ji 1 
5.98 
6.10 
7.50 
17.50 
30.98 

287.22 14.38 
161.04 12.74 
97.78 
67.30 5.36 

1 7.80 

16 55.14 4.18 11 j 1 
9.44 
7.34 
5.10 
4.70 
5.20 

225.50 3.04 
114.24 1.68 
58.72 
30.80 0.86 

16 17.56 0.98 

3.08 
1.70 
1.16 
0.86 
0.98 



Appendix 8 

Chart of lines of code (all i/o and comments removed) 
Lines Words Chars Program 

92 305 2846 Force (Local) 
48 170 1525 Force (Shared) 
214 649 6460 Concurrent (Local) 
161 501 4784 Concurrent (Shared) 
344 859 9706 Pisces (Message-passing) 
53 157 1572 Pisces (Force) A 
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t. 
0 
c 

I 
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